2,255 research outputs found

    On Redundancy Elimination Tolerant Scheduling Rules

    Full text link
    In (Ferrucci, Pacini and Sessa, 1995) an extended form of resolution, called Reduced SLD resolution (RSLD), is introduced. In essence, an RSLD derivation is an SLD derivation such that redundancy elimination from resolvents is performed after each rewriting step. It is intuitive that redundancy elimination may have positive effects on derivation process. However, undesiderable effects are also possible. In particular, as shown in this paper, program termination as well as completeness of loop checking mechanisms via a given selection rule may be lost. The study of such effects has led us to an analysis of selection rule basic concepts, so that we have found convenient to move the attention from rules of atom selection to rules of atom scheduling. A priority mechanism for atom scheduling is built, where a priority is assigned to each atom in a resolvent, and primary importance is given to the event of arrival of new atoms from the body of the applied clause at rewriting time. This new computational model proves able to address the study of redundancy elimination effects, giving at the same time interesting insights into general properties of selection rules. As a matter of fact, a class of scheduling rules, namely the specialisation independent ones, is defined in the paper by using not trivial semantic arguments. As a quite surprising result, specialisation independent scheduling rules turn out to coincide with a class of rules which have an immediate structural characterisation (named stack-queue rules). Then we prove that such scheduling rules are tolerant to redundancy elimination, in the sense that neither program termination nor completeness of equality loop check is lost passing from SLD to RSLD.Comment: 53 pages, to appear on TPL

    The Aftermath of Stellar Death: an Outline

    Get PDF

    The Supernova Remnant G11.2-0.3 and its central Pulsar

    Get PDF
    The plerion inside the composite Supernova Remnant G11.2-0.3 appears to be dominated by the magnetic field to an extent unprecedented among well known cases. We discuss its evolution as determined by a central pulsar and the interaction with the surrounding thermal remnant, which in turn interacts with the ambient medium. We find that a plausible scenario exists, where all the observations can be reproduced with rather typical values for the parameters of the system; we also obtain the most likely period for the still undetected pulsar.Comment: 10 pages, to be published on ApJ Letters. Formatted using AASTe

    Multidimensional relativistic MHD simulations of Pulsar Wind Nebulae: dynamics and emission

    Full text link
    Pulsar Wind Nebulae, and the Crab nebula in particular, are the best cosmic laboratories to investigate the dynamics of magnetized relativistic outflows and particle acceleration up to PeV energies. Multidimensional MHD modeling by means of numerical simulations has been very successful at reproducing, to the very finest details, the innermost structure of these synchrotron emitting nebulae, as observed in the X-rays. Therefore, the comparison between the simulated source and observations can be used as a powerful diagnostic tool to probe the physical conditions in pulsar winds, like their composition, magnetization, and degree of anisotropy. However, in spite of the wealth of observations and of the accuracy of current MHD models, the precise mechanisms for magnetic field dissipation and for the acceleration of the non-thermal emitting particles are mysteries still puzzling theorists to date. Here we review the methodologies of the computational approach to the modeling of Pulsar Wind Nebulae, discussing the most relevant results and the recent progresses achieved in this fascinating field of high-energy astrophysics.Comment: 29 pages review, preliminary version. To appear in the book "Modelling Nebulae" edited by D. Torres for Springer, based on the invited contributions to the workshop held in Sant Cugat (Barcelona), June 14-17, 201

    A model for the radiations from the compact strong sources

    Get PDF
    Model for origins and time variations of radiation spectrum over all wave band

    A Scalable Telemetry Framework for Zero Touch Optical Network Management

    Get PDF
    The interest about Zero Touch Network and Service Management (ZSM) is rapidly emerging. As defined by ETSI, the ZSM architecture is based on a closed-loop/feedback control of the network and the services. Such closed-loop control can be based on the Boyd's Observe Orient Decide and Act (OODA) loop that matches some specific management functions such as Data Collection, Data Analytics, Intelligence, Orchestration and Control. An efficient implementation of such control loop allows the network to timely adapt to changes and maintain the required quality of service.Many solutions for collecting network parameters (i.e., implementing ZSM data collection) are proposed that fall under the broad umbrella of network telemetry. An example is the Google gRPC, that represented one of the first solutions to provide a framework for data collection. Since then, the number of available frameworks is proliferating. In this paper we propose the utilisation of Apache Kafka as a framework for collecting optical network parameters. Then, the paper goes beyond that by proposing and showing how Apache Kafka can be effective for supporting data exchange and management of whole ZSM closed-loop.Experimental evaluation results show that, even when a large number of data are collected, the solution is scalable and the time to disseminate the parameter values is short. Indeed, the difference between the reception time and the generation time of data is, on average, 40-50ms when about four thousand messages are generated
    • …
    corecore